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Abstract
The electronic structure as a function of the chirality and deformations for
various carbon nanotori is theoretically investigated by the tight-binding
method. It has been found that for the various metallic tori the deformation-
dependent energy gap displays almost the same changing features versus the
deformations, whereas for the various semiconducting tori the deformation-
dependent energy gap does not show the distinctive regularity associated
with the deformed parameters and geometric parameters, but if the deformed
parameters have some particular values the energy gap would be narrowed and
even approach zero, causing the semiconducting torus to be quasi-metallic.
Under the circumstances of tan α = 0 and εL = εJ , the electronic structure
seems to be very insensitive to the existence of deformations.

1. Introduction

The carbon nanotorus,an important member of the families of carbon clusters,was theoretically
suggested by Dunlap [1], followed by Itoh et al [2]. Its structure is considered as consisting of
small sliced parts of nanotubes connected through pairs of pentagons and heptagons. Another
structure of carbon nanotorus is formed through bending a carbon nanotube and connecting
the two ends without introducing the pairs of pentagons and heptagons. Such a nanotube,
of course, has to be of sufficiently long length. Up to now, a number of papers have been
published devoted to synthesis study [3–6], experimental measurement [7–9] and theoretical
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calculation [10–19] of rings (or tori); their various properties such as negative magneto-
resistance and weak electron–electron interaction in the low temperature regime [8], the unique
atomic structure [11, 15–17], electronic structure and its magnetic field response [10–14, 18],
deformed and defective effects of electronic structure [16–18], etc, have been investigated and
revealed.

Most single-wall carbon nanotubes are experimentally found to be chiral in their atomic
arrangement [19]; so are carbon nanotori as they are formed through bending carbon nanotubes.
The realistic carbon tubes and nanotori are easily bent by the tip of an SPM, or crossing-
over electrodes in experimental measurements, or as a result of growth, deposition, and
processing; their geometric structure yields deformation, leading to modification of their
electronic structure. Although the effect of axial and torsional strains on the electronic structure
of chiral carbon nanotubes has been investigated by several authors [20–22], research on the
electronic structure of the carbon torus are still limited only to simple achiral cases (armchair–
zigzag and zigzag–armchair tori) with the deformations and defects taken into account or
not [13, 16–18]. Therefore, the effects of chirality and deformations on the electronic structure
for various chiral carbon nanotori remain unexplored.

In order to obtain a unified and profound understanding of the electronics of the carbon
nanotorus, in this paper we try to investigate the electronic structure in the coherent regime with
the emphasis on the effects of chirality and structural deformations, which are of uniform and
elastic deformations. The calculations show that for the various metallic tori the deformation-
dependent energy gap displays almost the same changing features versus the deformations,
whereas for the various semiconducting tori the deformation-dependent energy gap does
not show the distinctive regularity associated with the deformed parameters and geometric
parameters, but if the deformed parameters have some particular values the energy gap would
be narrowed and even approach zero, causing the semiconducting torus to be quasi-metallic.
Under the circumstances of tan α = 0 and εL = εJ , the electronic structure seems very
insensitive to the existence of deformations.

2. The unified expression of electron energy states

The tight-binding model with one π electron per atom is adopted in our present work to study
the electronic structure of the deformed chiral carbon nanotorus. The applied tight-binding
Hamiltonian can be unified and written as [23–26]

H =
∑

l

εlC
†
l Cl −

∑

l,ρ

γl,l+ρ exp

(
i
e

h̄

∫ Rl+ρ

Rl

A · dl

)
C†

l Cl+ρ, (1)

where C†
l (Cl+ρ) is the creation operator (annihilator) of the electron. ρ is restricted to nearest-

neighbour atoms and A is a vector potential of the magnetic field B. In equation (1), the
phase shift induced by an applied magnetic field is described by London theory [27]. Make
the operator transformations expressed as follows:

C†
l = 1√

N

∑

k

e−ik·Rl C†
k , Cl+ρ = 1√

N

∑

k

eik·(Rl +Rρ)Ck, (2)

where N is the number of the primitive cell. All the transfer integrals γl,l+ρ depend solely
on the bond length of the graphite sheet [28, 29]. If the atomic position Rl (i.e. atom A in
figure 1) is given, then we take Rl+ρ − Rl = Rρ and γl,l+ρ = γρ for short; ρ corresponds
to three nearest-neighbour atoms B shown in figure 1. For simplicity, the on-site energies εl

is set to zero. When a uniform magnetic field B threads through the torus plane, the vector
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Figure 1. The unrolled honeycomb lattice of a graphite sheet. The transverse vector CL =
ma1 + na2 and the longitudinal vector CJ = pa1 + qa2, respectively, correspond to tube and
torus circumferences; a1 and a2 are the unit vectors of a graphite sheet. R1, R2 and R3 denote
the vectors of bond length. θ is the chiral angle. The unit cell of the graphite sheet contains two
inequivalent carbon atoms, A and B.

potential is chosen as A = B × r/2. If r is chosen as the vector R representing the centre to
the surface of the torus, then A is unrelated to l. Thus equation (1) can be rewritten as

H = −
∑

k,ρ

γρ exp[i(k + 2πA/�0) · Rρ]C†
k Ck =

∑

k

ε(k)n̂k, (3)

where �0 = h/e is the flux quantum. The secular equation for the tight-binding model
is [30, 31]

det [H − E S] = 0, (4)

with HAA = 0 (HBB = 0) and HAB = ε(k) (HBA = ε∗(k)), taking SAA = 1 (SBB = 1) and
SAB = 0 (SBA = 0) for simplicity [30, 31]. We have

∣∣∣∣
−E(k) ε(k)

ε∗(k) −E(k)

∣∣∣∣ = 0. (5)

Solving equation (5), the energy dispersion relation for a π electron in such a system can be
obtained as

E(k) = ±
√

|ε(k)|2

= ±
{ 3∑

ρ=1

γ 2
ρ + 2γ1γ2 cos[(k + 2πA/�0) · a2] + 2γ1γ3 cos[(k + 2πA/�0) · a1]

+ 2γ2γ3 cos[(k + 2πA/�0) · (a1 − a2)]

} 1
2

, (6)

where a1 and a2 are the unit vectors of a graphite sheet (see figure 1). It is necessary to point
out that in equation (6) the periodical boundary conditions for a carbon nanotorus have not
been considered yet.
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A single carbon nanotorus may be described as a long rolled-up graphite sheet bent around
in the form of a torus (see figure 1). The transverse vector CL = ma1 +na2 and the longitudinal
vector CJ = pa1 +qa2, respectively, correspond to tube and torus circumferences; m, n, p and
q are integral numbers and satisfy (2m + n)p + (m + 2n)q = 0 and |CJ | � |CL |. Therefore, a
carbon nanotorus is uniquely defined as (m, n, p, q). In the case of a deformed graphite sheet,
we use εL and εJ to denote the strains due to tension or compression along the directions of ĈL

and ĈJ , respectively. Here ĈL and ĈJ are the unit vectors of CL and CJ , which are related to
the fixed coordinate system (X, Y ) with ĈL = cos θ î+sin θ ĵ and ĈJ = − sin θ î+cos θ ĵ. The
torsion deformation is assumed to appear only around the straight tubular axis (‖CJ ) before
bending carbon nanotubes to form a torus and α represents the shear strain. Within the context
of continuum mechanics, the simultaneous occurrence of the deformations causes the change
of the arbitrary lattice vector, Rl = RlLĈL + Rl J ĈJ , corresponding to the position of carbon
atoms of a graphite sheet and becoming

Rl J → (1 + εJ )Rl J , (7a)

RlL → (1 + εL)RlL + Rl J tan α. (7b)

For the deformed graphite sheet, the unit vectors a1 and a2 can be written in the coordinate
system (X, Y ) of figure 1 as

a2(εL , εJ , tan α) = A(εL, εJ , tan α)î + B(εL, εJ , tan α)ĵ

= a[cos(30 + θ) cos θ(1 + εL) − sin(30 + θ) cos θ(1 + εJ ) tan α

+ sin(30 + θ)(1 + εJ ) sin θ ]î

+ a[− sin(30 + θ)(1 + εJ ) cos θ + cos(30 + θ) sin θ(1 + εL)

− sin(30 + θ) sin θ(1 + εJ ) tan α]ĵ, (8a)

a1(εL , εJ , tan α) = C(εL , εJ , tan α)î + D(εL , εJ , tan α)ĵ

= a[cos(30 − θ) cos θ(1 + εL) + sin(30 − θ) cos θ(1 + εJ ) tan α

− sin(30 − θ)(1 + εJ ) sin θ ]î

+ a[sin(30 − θ)(1 + εJ ) cos θ + cos(30 − θ) sin θ(1 + εL)

+ sin(30 − θ) sin θ(1 + εJ ) tan α] ĵ, (8b)

where A and C (B and D) are, respectively, the X-axis (Y -axis) components of a1 and a2

in a fixed coordinate system (X, Y ) after deformations occur. All of them are complicated
functions of εL , εJ and tan α.

When a finite graphite sheet, whether deformation occurs or not, is rolled up to form a
carbon nanotorus, the periodical boundary conditions of both the transverse and the longitudinal
directions must be considered. At low temperature, if the electronic phase coherence in this
structure is preserved on a length scale comparable to or larger than the torus dimension, then
this nanotorus remains fully described by the eigenfunction of its Hamiltonian. Assuming
a homogenous magnetic field B is applied to thread through the torus plane, that is, the
potential vector A is chosen to run parallel with the longitudinal direction (‖CJ ), and using
the periodical boundary conditions,�(r) = �(r+Ci) (i = L, J ), where �(r) is the electron’s
Bloch function, we get

kx + 2π
Ax

�0
= 2π

pn − qm

[
pD + q B

AD − C B
L − m D + nB

AD − C B
(J + �/�0)

]
, (9a)

ky + 2π
Ay

�0
= 2π

pn − qm

[
mC + n A

AD − C B
(J + �/�0) − pC + q A

AD − C B
L

]
, (9b)

where L and J are integrals serving as the electronic state index and � is the magnetic
flux enclosed in the torus. Obviously, the wavevectors with the discrete allowed values are
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complicated functions of the geometric parameters (m, n, p, q) and the deformed parameters
(εL , εJ , tan α) contained in A, B, C and D, which are defined in equations (8a) and (8b).
Equations (9a) and (9b) are in combination with equations (8a) and (8b) and hence we obtain

(k + 2πA/�0) · a2 = 2π

pn − qm
(pL − m(J + �/�0)), (10a)

(k + 2πA/�0) · a1 = 2π

pn − qm
(−q L + n(J + �/�0)). (10b)

Substituting equations (10a) and (10b) into equation (6) and taking the spin-B interaction
energy (the Zeeman splitting) E(σ ) into account, then the unified expression of π-electron
energy states for the carbon nanotorus as a function of chirality and deformation with magnetic
flux threading through the torus plane is given by

E (L ,J )(�, εL , εJ , tan α, σ) = E (L ,J )(�, εL , εJ , tan α) + E(σ )

= ±
{ 3∑

ρ=1

γ 2
ρ + 2γ1γ2 cos

[
2π

pn − qm
(pL − m(J + �/�0))

]

+ 2γ1γ3 cos

[
2π

pn − qm
(−q L + n(J + �/�0))

]

+ 2γ2γ3 cos

[
2π

pn − qm
(−(p + q)L + (m + n)(J + �/�0))

]}1/2

+ h̄2gσ/m∗R2(�/�0), (11)

where the + (−) sign in front of the square root denotes the antibonding states (the bonding
states); the g factor is taken to be the same as that (≈2) of the pure graphite; σ = ±1/2
is the electron spin and m∗ is the bare electron mass [32]. It is very interesting to note
that the electronic energy states of such a complicated deformed nanotorus system can be
described through a surprisingly simple expression and it is affected only by deformation
through the transfer integrals γ j , not through (k + 2πA/�0) · ai (i = 1, 2) contained in
equation (6), although both (k + 2πA/�0) and ai are complicated functions of the deformed
parameters (εL , εJ , tan α) as stated above. This is an unexpected result. Furthermore,
seeing E (L ,J )(�/�0, εL , εJ , tan α) = E (L ,J−1)(�/�0 + 1, εL, εJ , tan α), this means that
E (L ,J )(�/�0, εL , εJ , tan α) is a periodical function of the magnetic flux � with a period
�0 as a result of the AB effect.

From the result of (k+2πA/�0) ·ai (i = 1, 2) being independent of the strain parameters
in carbon nanotorus, one may conclude that the electronic phase factor (k + 2πA/�0) · Rρ

in equation (3) remains unchanged under the deformation and it means the geometric
deformation does not change the electronic phase coherence. For a deformed structure, the
transfer integrals γρ have been suggested to have the simple relation with the bond length as
γρ = γ0(R0/Rρ)2 [28, 29], where γ0 (=2.66 eV) and R0 (=0.142 nm) are the transfer integral
and bond length of an undeformed structure, respectively, and Rρ is the bond length after

deformations occur and is calculated by Rρ =
√

R2
ρL + R2

ρ J for the graphite sheet, where the

formula of RρL and Rρ J can be derived from the deformed configuration as

R1L = λ[
√

3(m + n)(1 + εL) + (n − m) tan α], R1J = λ(n − m)(1 + εJ ), (12a)

R2L = λ[−√
3n(1 + εL) + (2m + n) tan α], R2J = λ(2m + n)(1 + εJ ), (12b)

R3L = λ[−√
3m(1 + εL) + (m + 2n) tan α], R3J = λ(m + 2n)(1 + εJ ), (12c)

where λ = a/6
√

3(m2 + n2 + nm) with the lattice constant a = 0.248 nm of a graphite sheet.
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In equation (11), L = 1, 2, . . . , Nm , and J = 1, 2, . . . , Np , where Nm (Np) is obtained
as a function of m and n (p and q) as

Nm =






2(m2 + n2 + mn)

d1
(m − n �= 3d1i)

2(m2 + n2 + nm)

3d1
(m − n = 3d1i),

(13a)

Np =






2(p2 + q2 + pq)

d2
(p − q �= 3d2i)

2(p2 + q2 + pq)

3d2
(p − q = 3d2i),

(13b)

where i is an integral, and d2 (d1) is the greatest common divisor of p and q (m and n).
The tori can be classified as metal (type I), semiconductor (type I) or insulator (type III)

depending entirely on the gap between the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) in the proximity of the Fermi level. In the
case without deformations and magnetic field, using equation (9) we deduce a simple rule,
i.e., the geometric parameters of the chiral metallic carbon nanotori satisfy m − n = 3i and
p − q = 3i (i is an integral), the chiral semiconductor tori satisfy m − n = 3i and p − q �= 3i
and the chiral insulator tori satisfy m − n �= 3i and p − q = 3i . We may also verify that the
tori with m − n �= 3i and p − q �= 3i do not exist.

Here, we would like to emphasize that the assumed carbon nanotube bent to construct a
torus is of sufficiently long length and large size that the effects of both inhomogeneous strain
along the circumference of the torus and rehybridization of the π–σ orbital are neglected.

From equation (11) and in the case of neglecting the spin-B interaction, it is very easy to
obtain the results in the previous works by us and other researchers for the particular simple
situation [13, 14, 33].

(1) Setting tan α = 0 and assuming the deformation is originated only from curvature
and bending of a graphite sheet for the formation of a carbon nanotorus inducing the transfer
integrals γρ to deviate γ0 [14], we can obtain γ1 = γ3 for an (m, 0,−p, 2 p) zigzag–armchair
(ZA) torus and γ2 = γ3 for an (m, m,−p, p) armchair–zigzag (AZ) torus from equations (12a),
(12b) and (12c). Substituting these data into equation (11), we obtain

E (L ,J )(�, εL , εJ )ZA

= ±
{
γ 2

1 + 4γ1γ2 cos

[
π J

m

]
cos

[
π

p
(L + �/�0)

]
+ 4γ 2

2 cos2

[
π J

m

]} 1
2

, (14a)

E (L ,J )(�, εL , εJ )AZ = ±
{
γ 2

1 + 4γ1γ2 cos

[
π J

m

]
cos

[
π

p
(L + �/�0)

]

+ 4γ 2
2 cos2

[
π

p
(L + �/�0)

]} 1
2

, (14b)

which are identical with equations (2b) and (2c) in [14].
(2) In the absence of the geometric deformation, namely, when εL = εJ = tan α = 0,

one can obtain γρ = γ0 from equations (12a), (12b) and (12c), then the generic expression of
π-electron energy states for the carbon nanotorus as a function of the chirality and magnetic
flux threading through the torus plane, but without deformations occurring, is deduced from
equation (11) as follows:

E (L ,J )(�) = ±γ0

{
1 + 4 cos

(
π

pn − qm

[
(n − m)

(
J +

�

�0

)
− L(q − p)

])
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× cos

(
π

pn − qm

[
(p + q)L − (n + m)

(
J +

�

�0

)])

+ 4 cos2

(
π

pn − qm

[
(p + q)L − (n + m)

(
J +

�

�0

)])}1/2

, (15)

which is in agreement with our previous work [33]. The electron energy states in the
undeformed case of an (m, m,−p, p) AZ torus and an (m, 0,−p, 2 p) ZA torus can be deduced
directly from equation (15) as

E (L ,J )(�)ZA = ±γ0

{
1 + 4 cos

[
π J

m

]
cos

[
π

p

(
L +

�

�0

)]
+ 4 cos2

[
π J

m

]} 1
2

, (16a)

E (L ,J )(�)AZ = ±γ0

{
1 + 4 cos

[
π J

m

]
cos

[
π

p

(
L +

�

�0

)]
+ 4 cos2

[
π

p

(
L +

�

�0

)]} 1
2

, (16b)

which are identical with equations (1a) and (1b) in [13].

3. The deformed and magnetic effects on the energy gap

Numerous calculations using equation (11) in the absence of the magnetic flux have been
performed to explore the correlations between the deformation-dependent energy gap Eg and
related parameters, such as deformed parameters (εL, εJ , tan α), torus radius R, tube radius
(torus width) r and chiral angle θ .

For the metallic carbon nanotorus, selecting the tori with the parameters (3, 3,−450, 450)
(r = 2.0 Å, R = 177.4 Å, θ = 0◦), (6, 3,−400, 500) (r = 3.12 Å, R = 180.6 Å, θ = 10.9◦),
(4, 1,−360, 540) (r = 1.8 Å, R = 187 Å, θ = 19.1◦), (9, 0,−260, 520) (r = 3.55 Å,
R = 177.5 Å, θ = 30◦), (8, 2,−360, 540) (r = 3.6 Å, R = 187.7 Å, θ = 19.1◦) and
(6, 3,−120, 360) (r = 3.12 Å, R = 125.2 Å, θ = 10.9◦) as examples, the changing properties
of the deformation-dependent energy gap Eg can be concluded as follows.

(1) The energy gaps Eg for the various metallic nanotori have similar changing curves
versus the deformed parameters (εL, εJ , tan α) and depend strongly on the values of εL, εJ

and tan α. If only a kind of deformation (εL or εJ or tan α) exists, then the energy gap
changes more quickly and shows linear evolution with this kind of deformation increasing (see
figures 2(a)–(c)).

(2) When tan α = 0 (without torsion deformation) and εL = εJ , the metallic nanotorus
retains metallic characteristics (Eg = 0) in spite of tension deformation existing; this is because
the tension deformation in this case does not change the hexagonal symmetry of the honeycomb
lattice although the bond length varies from deformation. As long as we set tan α �= 0, always
Eg �= 0, its minimal value appears at the position of εL = εJ (see figure 2(b)). Even if εL and
εJ are larger values (i.e. εL = 0.01 and εJ = 0.011 in figure 2(c)), but the difference between
both is smaller, then the evolution of energy gap versus tan α in this case is nearly the same as
in the case of εL = εJ = 0; this means the smaller the difference between εL and εJ is, the
smaller the energy gap is.

(3) The energy gap Eg depends weakly on the chiral angle θ . Eg increases slightly with
the chiral angle θ , which means that the deformation has less effect on the metallic armchair-
zigzag torus (θ = 0). In addition, we find that Eg is independent of torus radius R and torus
width r .

For the semiconducting carbon nanotorus, selecting the tori with the parameters
(5, 2,−375, 500) (r = 2.5 Å, R = 177.7 Å, θ = 13.9◦), (4, 1,−340, 510) (r = 1.8 Å,
R = 177.7 Å, θ = 19.1◦), (3, 3,−451, 451) (r = 2.0 Å, R = 177.8 Å, θ = 0◦),
(4, 1,−400, 600) (r = 1.8 Å, R = 208.6 Å, θ = 19.1◦), and (8, 2,−400, 600) (r = 3.6 Å,
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Figure 2. ((a)–(c)) The energy gaps Eg for various metallic (type I) tori; they strongly depend on
deformations and weakly depend on their chirality, but have similar changing curves versus the
deformed parameters (εL , εJ , tan α), where εL and εJ are the strains due to tension or compression
along the directions of tube and torus circumferences, and α represents the shear strain. When
tan α = 0 and εL = εJ , the metallic nanotorus retains its metallic characteristic. The smaller the
difference between εL and εJ is, the smaller the energy gap is. (d) The energy gaps Eg for various
semiconducting (type II) tori; they strongly depend on deformations and chirality, but without the
distinctive regularity. The smallest energy gap Eg may occur as the particular values of εL and εJ

are taken, and even approaches zero to cause the semiconducting torus to be quasi-metallic.

R = 208.6 Å, θ = 19.1◦) as examples, the changing properties of the deformation-dependent
energy gap Eg, shown in figure 2(d), can be concluded as follows.
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(1) The energy gap Eg shows a strong dependence on the magnitude of εL, εJ and tan α, and
increases or decreases without remarkable features as the deformation increases. In general,
the greater the torsion is, the larger the energy gap is.

(2) Setting tan α = 0 and εL = εJ , then Eg approaches a value smaller than that in the
undeformed case, but the smallest energy gap Eg may occur as other particular values of εL and
εJ are taken, and even approaches zero, causing the semiconducting torus to be quasi-metallic.
The simple linear relation for Eg with a kind of deformation parameter (εL or εJ or tan α),
which exists for the various deformed metallic tori, has not been found.

(3) The energy gap Eg is independent of torus width r and depends on the chiral angle θ

and torus radius R, but without the distinctive regularity.
In the presence of flux, the energy gap of a torus varying with the deformations and flux

is very complicated, but taking tan α = 0, εL = εJ = ε and |CJ | � |CL | and neglecting
the spin-B interaction we can deduce the simple analytic expressions for the energy gap from
equation (11). For the chiral metallic (type I) carbon nanotorus, the energy gap is given as

Eg(�, ε, tan α = 0) =
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(17a)

For the chiral semiconducting (type II) carbon nanotorus, the energy gap is given as

Eg(�, ε, tan α = 0) =
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where m, n, p and q in energy gap expressions show the energy gap dependent on the chirality,
radius R and width r of torus, but independent of torus width r just for the armchair–zigzag
(AZ) and the zigzag–armchair (ZA) torus. Obviously, the energy gap is a linearly periodical
function of the flux � threading through the torus plane, with a period �0, and it is symmetric
about �0/2. When the flux � varies, the type I and II tori exhibit properties of the continuous
transitions from a metallic phase to a semiconducting phase or vice versa. The type I (II) tori
are metallic at �c = i�0 (�c = (i ± 1/3)�0). Furthermore, we may confirm that type III
tori are very insensitive to the magnetic field and do not have a simple energy gap expression
similar to equations (17a) and (17b) for type I and II tori, and the larger gap remains almost
unchanged while the flux � varies.

4. Conclusion

Based on the tight-binding model, a concisely unified expression of π-electron energy states
for the carbon nanotorus as a function of chirality and deformation with magnetic field
vertical to the torus plane is obtained; the result shows that electron energy states are affected
by deformation solely through the transfer integrals γρ , not by the electronic phase factor.
For the various deformed metallic tori their deformation-dependent energy gap Eg displays
almost the same changing features with the deformed parameters (εL , εJ , tan α) varying and
strongly depends on the values of εL , εJ and tan α, weakly depends on their chirality and is
independent of torus radius R and torus width r , whereas for the various semiconducting tori
their deformation-dependent energy gap does not show the distinctive regularity associated
with the deformed parameters and geometric parameters, but if the deformed parameters have
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some particular values the energy gap would be narrowed and even approach zero, causing
the semiconducting torus to be quasi-metallic. Under the circumstances of tan α = 0 and
εL = εJ , the electronic structure seems to be very insensitive to the existence of deformations.
The flux-dependent energy gap for the deformed chiral metallic torus or semiconducting torus
in the case of tan α = 0, εL = εJ = ε and |CJ | � |CL | can be derived as an analytic
expression.
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